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N66 35592 PARE I 

R. L. Bard 

A. I n t r ~ u c t l a n  

A mass spectrosneter that has many thearet ical  admeges mer other 

spectrcmeters f m  space research has been experimentally investigated. 

It is a velacity filter device w6ich derives its mass separation a b i l i t y  

frau the phane difference i n  iom traversing three stagee & electro- 

static deflection. 

by a ecan voltage, pass thrw a vert ical  and tu:, harizantal def'lectian 

stages in phase w i t h  a 1.0 Mc eaut-h deflection p*ential spplied 

between the plates of each stage. These resonant ions fmm a diago- 

nal display ( ~ i s s s j ~ s  pattern) an the callectar. Hon-resonant ione 

fnm similar displays on either s ide of the remnant ion display, 

Ions t h a t  have e pre-selected v e l x i t y ,  determined 

The chief advantage of the Lisaajms mass spectr=meter mer 

The duty cycle is radio-frequency types is its lag duty cycle. 

Umited mly by the  flyback t i m e  af the s&oOth deflectian p3tential 

and this i e  only abcnat 3s rf the sawtwth cycle. The duty cycle is 

a t  least twice that of the Bennett tube. 

The Lissajous spectraneter has no bw-mass discrimination as 

does the  Bennett tube. 

loss i n  the  Bennett tube, have been eliminated i n  the  Iilssaj3us. 

The diameter cmld  be reduced t o  a fraction af t h a t  of the Bennett 

tube. 

Grids, one af the mor causes af sensi t ivi ty  
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B. Themy ai? Analysis - 
All ions leaving the last electrMe of the ion fxus ing  gum are 

given an energy, eV, where e is the unit e lectrostat ic  charge i n  

ccrulcrmbs and V is  the patent ia l  of t he  last electrcde (scan pstential)  i 

i n  mlts. 

bY 

These ions have a v e l x i t y ,  v, in meters per second, given 

where m = mass of the i m  i n  kilagrams 

The ionic non-resmant t o  resonant velocity ra t io ,  z, is given by 

where the subscript indicates the remnant ion. 

is selected t o  maintain p b s e  relatimship w i t h  a sawt- deflectim 

p&ential  applied t o  each af the deflection stages. If l a m  with 

m~sses m and mo enter the first set of deflection plates i n  phase 

and m # mo they w i l l  enter the second stage cut af' phase. The ion 

w i t h  mass m w i l l  alsa be at af phase with the servtodh and theref'cwe 

will he deflsctad m e  31: ~ S I S  tiban- re=aa& a w u b  ZIBW moe 

The phase difference between the two masses, o2 , i n  fractions 3f a 

sawtooth cycle is given by 

The v o l x i t y  af mo 

0 2 = $ - a  

where a is the  equivalent length & drif't space between se ts  one and 

tu3 i n  cycles af s w o a t h  waveform. 

phase difference, 0 is 

Between stages two and three this 

3' 

a+b O3 = - - (a+b) z 

4 
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C. 

where b is the equivalent length of the second drift space in cycles 

of sawto%h waveform. 

The t d a l  difference of deflection on the screen, hy , can be 
given as 

where: E = deflection p%ential in volts 

s = plate separation i n  meters 
d = plate length in meters 
V = scan pstent ia l  i n  v31ts 

2 

3 

L = distance frm secmd def lec t im stage t o  screen i n  meters 
L = distance frm third deflection stage t o  screen in meters 

Experimental 

1. V a c u u m S y s t e m  

The vacuum system consists basically S a Consolidated 

Vacuum MCF-60 o i l  diffusion pump ccPnplemented by a Welch l b O B  

mechanical pump. The diffusion pump f luid is Octoil, C K ' s  brand 

of 2-ethyl hexyl phthalate. 

liquid nitrogen t r ap  help prevent pump o i l  frm cantaminating 

the vacuum chamber. The baffle, cold trap, and plumbing ere 

made of stainless steel. The vacuum chamber consists af a 

series 

end t:, end w i t h  Teflon O-rings. 

inch VCS-21 valve. 

by NRC Type 501 thermocmple gauge. The high vacuum is 

measured by an RCA 1949 ionization gauge. 

A w a t e r  cooled qtFcal  baffle and 

fmr inch diameter, m b l e  Tmgh Pyrex pipes sealed 

The gate valve is a CVC two 

Pressure i n  the micron region is measured 
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2. The Msss Spectrameter Tube 

A drawing af the mass spectrcmeter and assxiated circui t ry  

is given i n  Figure 1. 

vacuum chamber. The inside af the chamber is lined w i t h  brass 

mesh, s, t o  cut drrwn the effects of s t ray  fields and t o  eliminate 

part  af the space charge. !he s tab i l i ty  af the beam is thereby 

increased. The tube consists af five majm elements. Three of 

these (the electron formation and fxusing region, A, the  ion 

fmnation regian, B, and the ion f a x s i n g  and accelerating 

region, c), are ccmpression mmnted on an a~uminum end cap. 

A f&h element, the collector assembly, D, is mrjurrted an two 

rods which enter thrtrugh a plate, P, at the spposite end af the 

system. 

plates introduced thrmgh metal spacers between the glass 

sectians of the vacuum chamber. A scan element is also inchded 

i n  this section. 

a. Electron Pamation and F m s i n g  

The tube is located i n  the Pyrex high 

The fifth element, E, consists of three sets of deflection 

Electrons a re  emitted frau a shart  sectian of rhenium 

ribbon, F. 

s h a d  focal  length beam by an immersion lens, L. The lens 

consists of f a r  Nichrane discs w i t h  concentric apertures. 

The c m t r o l  grid and the  first accelerat iw e l e c t r d e  are 

five mils thick and the apertures are 0.0591 inches i n  

diameter. 

are ten  mils th ick  and the i r  apertures are 0.0787 inches 

These electrons are fxused  into a small diameter, 

The focusing and second accelerating e l e c t r d e s  
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i n  diameter. The distance between the filament and control 

grid is abaut 0.030 inches. The separation of the cantrol 

gr id  and first accelerating e l e c t r a e  is 0.0197 inches and 

the  separation of the &her elements is 0.079 inches. 

used thrmghat t h e  system are made :,f Supramica 500 (Mycalex 

Carporation). 

the earth's magnetic f i e ld  w a s  strong en=& ( 5  x 

webers/&) t o  deflect the lm energy e lec t rms  (-5OeV) 

i n  the long distances of a standard electron gun such as 

the Superiar Electronics 3MP. 

Spacers 

A shmt electron gun w a s  necessary because 

b. Ion Fomation 

The electrons are fxused inta the space between the 

first two elements of an e q u i w e n t i a l  ionization region, I. 

The sanqle is also intrdiuced between these two elements. 

The third element, U, af the imizat ian regian acts t o  

pul at ions and t o  repel any electrons that are nrt  

captured by the dher two elements. 

The elements are xnade af ten mil N i c h r a n e .  The first 

tw:, apertures are  0.063 inches i n  diameter; the last is 

0.080 inches in diameter. 

c. Ian Fxusing and Acceleration 

The ions fram the  pulling cut region are collected by 

a three element aperture lens, Z. 

elements w i t h  0.063 inch diameter apertures. 

aperture is 0.156 inches i n  diameter. 

This lens has two mter 

The center 

The ions are fxused 
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into the f i r s t  element of a three element cylindrical lens, Y. 

The cylinders are  a l l  0.375 inches lang and 0.1875 inches i n  

diameter with variable spacing. 

which focuses the  ians an the collectar 1.3 m e t e r s  away. 

They form a very weak lens 

d. Analyzer Region 

The analyzer region consists af three stages of deflection 

The scan element determines the  reso& 

The last two stages are  crthogonal t o  the first stage. 

and a scan element. 

mass. 

Each stage cansists of 4x3 plates one centimeter i n  length. 

In  the first two stages the plates are  three x n  apart and 

i n  the final stage they are three cm apart. 

between the first and secant3 stage is  50 cm. 

secmd and third stages the  d r i f t  space is  30 cm and the 

d r i f t  space framthe third stage t o  the collector is 50 cm. 

Ten centimeters is  equivalent t o  one cycle af sautaath 

def lection pstential. 

The d r i f ' t  space 

Between the 

The sawtocrth generatar is  a cmstant current generatar 

The cmi l l a t a r  uses a fast with a relaxatim oscillatDr. 

rise time, short duratian pulse t o  tr igger a transistor 

switch which shorts a capacitor. 

sawtorth is me microsecond and the f ly back time is abmt 

trienty nanDseconds giving a duty cycle greater that 97$. 

Nonlinearity of the sawtoath is abmt lo'$. 

The t&al duratim of the 

e. Collector 

Ian determination is by electrastatic callection. The Current 
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is read direct ly  in to  an electrmeter.  

consists of t w 3  sections. The one nearest the ion formation 

region is a .I25 inch Nichrane ribbon. The second section 

is a sol id  brass plate t h a t  acts  as a back-up plate t o  carry 

off non-resonant ions. The ribbon is almcxt coterminms 

with the cross section D f  the resonant ion beam. 

The collector 

The ent i re  collector assembly is mmnted 3n two rads which 

terminate an the mtside of the vacuum system. 

these rds,  two dimensional mation can be imparted t o  the 

collector. A t h i rd  mavement can be initiated by s l iding 

the rs3s on dual O - r i n g  seals. This provision w a s  made 

t a  cmpensate f a r  the d i f f icu l ty  af aligning the long 

beam on the axis of the  system. 

By rotat ing 

D. Cmclusion 

%is mass spectraneter, i n  i t s  present state af development, is 

not sui table  f a r  use as an analyzer i n  mter space because af its 

length. 

reduced easily using present techniques. 

the deflectim plates is abmt 1.0 cm due t o  fringing effects  at  

shorter lengths. The transit t i m e  of particles thrmgh a set of 

deflectim plates must n d  be mare t h a n  one tenth af t he  def lec t im 

w a v e f m  peris3 so the wavefarm must have an equivalent length of 

t e n  cm. 

spaces are five,  three, and f ive i n  tha t  arder and therefare, the 

equivalent respective d r i f t  space lengths must be 50 cm, 30 an, and 

50 cm. 

The length is established theoretically and cam& be 

The mininnun length of 

The lwest pract ical  number of cycles fo r  the three drift 

This resul ts  i n  a minimum analyzer length af 130 em. 
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This length w w l d  n& be impractical i n  the labmatmy and pmbably 

wmld n3t avershadm the desirable features af the tube. 

The resalutim af the L i s s a j m s  mass spectrmeter is abmt 

f ive  at the present time. 

The duty cycle is armnd 95s. 

be increased by existing techniques. 

The efficiency is abmt three percent. 

All three Df these parameters can 
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PARI! I1 - A STUDY OF DIFFERE3" DESIGNS OF COLI) EUXZ'RON SOURCES CAPABLE 
OF MASS SPECTl?OMETRIC APPLICATIONS 

Submitted as publication with fcrmat t o  canply w i t h  ed i tor ia l  
regulations and therefore deviates frm format of Part I, 

A Study Df Different Designs af Cold Electrm Smrces 

Capable of Mass Spectrcwetric Applicatims 

M. K. Testerman, R. W. B ib le ,  B. E, Gilliland, and J. R. W i l l i a m s  

Department af Electronics and Instrumentaticm 

Graduate Ins t i t u t e  af Technolqgr, University of Arkansas, L i t t l e  Rxk, Arkansas 

and 

0.  B. Grimes 

physics Department, University of Arkansas, Fayetteville, Arkansas 

AEs!PRAm 

Varims methods 3f providing cold electrans for  

ionizing neutral  gas molecules i n  a mass spectrcmeter 

have been studied. 

general type i n  which a relatively weak current frdm 

These devices a l l  belong t o  the  

l 

I a primary emitter is  amplified by an electron m u l t i -  

I pl ie r .  

conventional bucket-dynde 3r resistance-strip magnetic 

types. The f i n a l  designs af the  cold smrces described 

here used tantalum pha txa thdes  under ultraviDlet 

i r radiat ion as primary electron smrces, 

were found t o  be highly efficient,  consume a negligible 

The multipliers used i n  th i s  study were ei ther  

The smrces 

I 
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amcsunt of pwer using sunlight, have minimal 

mtgassing and gettering effects, and prcduce con- 

siderably less short term emission f luctuat ims 

when canpared with a temperature-limited thermionic 

emitter. These devices wmld lend themselves w e l l  

t o  calibration work and space-f light instrumentation. 

I I N T R O D W I O N  

The use of electrons wi-h 50 t o  00 e lec t rm volts of energy 

2 

Ls one 

of t he  most ccnmonly employed techniques for prducing ions from neutral 

molecules i n  a mass spectrmeter. In  the past, thermionic emitters have 

been used almost universally as the smrce of the  ionizing electrons. The 

presence of the hcrt w i r e  i n  the praximity of the ionizing r eg im gives 

rise t o  the  vast  majority of d i f f icu l t ies  experienced i n  the use af mass 

spectrtanetry f o r  precise quantitative analyses. 

h r t  bcdy as an electron smrce  could pcrtentially minimize several problems 

such as: formation of insulating dep3sits on surrcsunding elements; vari- 

The elimination of t he  

ation i n  the mass spectrum cracking p a t t e r n  due t o  thermal variations i n  

the ionizing region; selective gettering of the entering sbmple, subse- 

quently causing the  composition of the sample t o  be m d i f i e d ;  the very 

accurate and fast response af emission reguht ion required when qerating 

the filament i n  a temperature limited mode; heat pumping ar mt gassing 

the  ionizing region; and the elimination of carbon msnzide contribution 

t o  the 28 peak. 

several cold techniques fo r  prducing electrons c q t i b l e  f m  appli- 

cation i n  mass spectrmeter ion smrces, where the ion region may be 

operated a t  ram temperature 3r belcrw. 

The fo l lming  is a description of an investigation of 
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I1 Experimental Apparakus and Techniques 

(1) Ten-stage Bucket Dynode Electron Multiplier 

This electron smrce consisted essentially of a photocathale, excited 
’ by ul t raviolet  radiation, with an electrm multiplier t o  amplify and direct  

the ph3toelectrons into the  ionization region of a radio-frequency mass 

I spectrmeter (see Fig. 1). The ten-stage electron multiplier had bucket- 

, shaped silver-magnesium dyndes of the type used i n  the hmont 6291 m u l t i -  

p l ier ,  b u t  witkcrut cesium activation. 

i n  s ize  and shape t=, t h e  multiplier dyncdes. 

The tantalum p h ~ o c a t h d e  w a s  identical  

It was mmnted adjacent t o  the 

first dynode at  a distance equal t o  the multiplier dynode spacings. 

photocathMe faced a sapphire windm (1 inch i n  diameter by 1/8 inch thick) 

The 

I 

which transmitted ultraviolet  l ight f rm a hydragen arc lamp a t s i d e  the 
I 

, 
I 

- b ’ & c u W  system. The f i n a l  stage of the multiplier, frcm which the  electron 

bean emerged in ta  the  ionization region, was 1/8 inch frm the first grid 

of the  mass spectrmeter ion smrce. 

perfarmed i n  a vacuum system capable of an ultimate pressure of 6.3 x 

Tom, being pumped by an Eimac HV-1 o i l  diff’usion pump and having a liquid 

Studies using t h i s  smrce were I 
I 
I 

nitrogen t r ap  between the  pump and the  evacuated regian. 

(2) Ccmtirrums -.y’n3de Electron Multiplier 

I Two resistance s t r i p  ty-pe multipliers, based on a design develaped 

by the Zendix Corporation’ for  use as an ion detector, were designed and 

constructed a t  t h i s  laboratory. O f  these two multipliers, one used an 

clectrmagnet t o  create i ts  magnetic f i e l d  while the other had permanent 

magnets. Mhereas the Bendix multipliers were designed t o  amplify minute 

ion currents, these multipliers were designed t o  prduce  micrmperes  af 

electron current. 
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The resistance s t r i p  multiplier uti l ized th in  f i l m s  of t i n  oxide for  

dynde  surfaces. 

fo r  the dynade s t r ips .  O f  the many cleaning methds tested, the use of wet 

liquid . detergent fol lmed by vapor degreasing i n  trichlorcethylene w a s  fmnd 

t o  be the most reliable cleaning technique. 

s t r i p  includes evapcmating, i n  vacuo, a th in  f i lm  of titanium onto the  slide 

surface and midizing it u n t i l  its measured resistance lies i n  the 1 t o  10 

megohm range. Finally, a th in  f i lm  of tin is evaporated, i n  vacuo, mer 

the t i t a n i u m  dimide and activated (midized) by heating i n  air at  an appropriate 

temperature u n t i l  the  resistance of t he  s l i d e  returns t o  that of the titanium 

dioxide f i lm .  Depsi t ion wark w a s  conducted i n  an 18'' diameter Pyrex belljar 

pumped by a Veeco EP4 o i l  diffusion pump equipped with a liquid n i t rwen trap. 

The system w a s  capable af maintaining pressures bel= 1 x 

d w s i t i o n ,  

Extremely clean microscope slides served as the substrate 

Preliminary preparation of a 

T m r  during 

Electrical cmtac t  t o  the  dynde s t r i p  w a s  made by soldering leads onto 

evaporated gold or silver-manganese contacts using indium solder, 

manganese contacts as described by G a l d  and F i n n e g d  have prmren t o  be 

superior t o  gold contacts i n  adhesiveness, ruggedness, and ease of soldering, 

The silver- 

These multipliers have been merated for t es t  purposes, i n  vacuum 

Torr, being systems capable of ultimate pressures of l ess  than 1 x 

pumped by VEECO EP-4 o i l  diffusion pumps and having a liquid n i t rwen t r ap  

between the  evacuated region and the pump. 

I11 Fkperimental Results 

(1) Bucket Dyna3e Electron Multiplier 

The electrons frm th i s  multiplier, because of i ts  design configuration, 

This condition are emitted i n  an unidirectional path aver a short distance. 

I 
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gives rise t o  a higher ionization efficiency than thatxhtained fram a 

conventional thermionic emitter. I n  the  case af the radio frequency mass 

spectraneter, wherein the cold electron smrce w a s  tested, the ionization 

efficiency increased by a factar of 200 when the  cold s m c e  w a s  substituted 

far the usual thermionic smrce. 

The n-butane spectrum sham i n  Fig. 2 w a s  typical  of those abtained w i t h  

the cold electron smrce. There w a s  no detectable less of resolution and 

the operational features of the RF' mass spectraneter were not m d i f i e d  i n  

any w a y  by the  use af t h i s  electron smrce. 

i n  the  mass 28 peak, since t h e  removal of the  thermianic emitter eliminated 

the usual formation of carbon monoxide. 

There w a s  the expected reduction 

The s t a b i l i t y  of the multiplier source w a s  evaluated by comparing the 

spectra peak8 p r m c e d  by the characteristic fragmentatim af n-butane mer 

a five-day pericd. 

w a s  5.94, while the r a t i o  of t he  43 peak t o  the 29 peak was 2.55. 

f i f t h  day, these rat ios  were the same, thus indicating that t h e  energy 

spectrum of the  ionizing electrons w a s  remaining constant, althmgh the 

overall gain Df the multiplier asseuibly decreased during the period of 

qera t ion .  

transients i n  electron emission i n  contrast t o  the temperature limited 

thermionic emitter. 

current w i l l  decrease gradually and appraches a constant value asymptstically, 

thus simplifying electron emission regulation. 

On the first day the  ra t io  of the 43 peak t o  the 58 peak 

On the 

The cold electrm smrce did nst  display large short term 

With contimaus use of t h e  cold smrce,  the ionizing 

O f  the several materials considered f o r  the phAocathde, tantalum 

prwided the  highest emission current (see Fig. 3). Under the conditions 

of an o i l  contaminated vacuum system, tantalum displayed the la res t  rate 

of electron emissian decay. A f i l m  of lanthanum boride on a carburized 
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tantalum base gave an emission current appraching that of tantalum but much 

less durable, lasting less than 5 minutes. 

silver-magnesium exceeded that of activated silver-magnesium but 

canpared w i t h  that of tantalum, 

Electron current frsn unactivated 

neither 

Additionally, the tantalum has an advantage over the sther materials 

tested i n  tha t  i ts  surface can be cleaned easily and repeatedly by flashing 

a t  800-1000°c for  apprfucimately 1 minute. 

phdxathade w a s  mmnted an twa heavy aluminum rcds inserted thrmgh the 

end-cap w a l l s  of the mass spectrcmeter. 

(photocathde holder). 

insulated the rMs electr ical ly  frm the rest  of the system. 

cross section of t he  rd s  permitted high currents t o  be fed t o  the phrto- 

c a t h d e  withcrut averheating the Teflon seals. 

the tantalum has been exposed t o  air and may be used t o  restore f u l l  emissivity 

whenever the  wtput  current fa- below an acceptable level, 

For t h i s  purpose, the tantalum 

These rd s  are shown i n  Fig. 1 

Teflon seals made the in le t s  vacuum tight and 

The large 

Flashing is necessary after 

The tantalum possesses g o d  resistance t o  typical poisonibg agents as 

indicated i n  Table I. 

ul t raviolet  radiation was gradual and very nearly linear, indicating again 

that emission regulatian w i l l  be relatively simple, 

c a t h d e  restored full crutput i n  all cases, even after i t s  extreme decline 

frm long exposure t o  butane. 

The decrease i n  phatwzuission current during continuaas 

Flashing the ph=rto- 

The ten-stage electron multiplier w a s  capable of prcducing an ionizing 

electron current of 20-40 micrcauperes using an input current of 0.09 - 0.9 
micraamperes. 

dynMes (see Table 11). 

Cases have very l i t t l e  poisoning effect  on the silver-magnesium 

After each of these t e s t s  the dyndes regained virtually a l l  of the i r  

or iginal  secondary emissian characteristics after a 24 hmr reccrvery p e r i d  

under a vacuum of apprmcimately 6.3 x lo-' Torr. 



7 

!€!he pwer cc~nsumed i n  prMucing m e  micrampere of imizing currezt 

w a s  160 micrcjwatts f m  the cold smrce,  which may be contrasted with 6 w a t t s  

af pmer required by a thermionic emitter af emparable =rutput current 

gemetry. 

In an additional t e s t ,  the multiplier assembly w a s  left  i n  the vacuum 

system withmt a cold t rap  for  12 hmrs and then remained mrxxnted i n  the  

system, exposed t o  roan a i r  withmt vacuum, f m  an additional 48 hmrs.  

The secondary emission caefficient was measured befare remmal af the  cald 

t rap and again, a t  the end of the 60 hmr  p e r i d ,  after replacement of the 

cold t rap and restoration of a vacuum of 1.5 x lo-' Torr. 

the second measurement with the first shmed a drop i n  secmdary emission 

coefficient of o w  25$, 

Cmparison of 

(2) Contirrums Dynde Electron Multiplier 

The basic resistance s t r i p  multiplier, shrjwn schematically i n  Fig. 5, 

cmsists of two plane-parallel, res is t ive surfaces . 
mdinarily consist Df a semiconducting c a t i n g  over an insulating base 

wherein the active surface pmsesses the proper volume resis t ivi ty .  

p3tential gradients are established along each surface by applying equal p&ential  

differences acrass the  s t r i p ' s  long dimension. 

( f ie ld  s t r i p )  is maintained more positive than tha t  of the other surface 

(dyncde s t r i p )  at  camparable lengths almg the s t r ip .  

l ines are parallel t o  each &her and slanted i n  the direction sham i n  the 

diagram. 

t o  the electrostat ic  field.  

any point w i l l  describe a trachoidal path whase i n i t i a l  direction is 

determined by the equiprtential at i ts  point of origin. 

t o  t he  dynade s t r i p  with an impact energy corresponding t o  the difference 

i n  pdential between i ts  pDints Qf wigin and impact. 

These surfaces 

mal 

The patential  of one surface 

Thus the equip=rtential 

The ent i re  structure is  placed i n  a uniformmagnetic f i e ld  normal 

An electron released frm the dyncde s t r i p  at 

It w i l l  return 

I n  a praperly 
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designed multiplier t h i s  energy w i l l  be lasge encrugh t o  give a secondary 

gnission r a t i o  greater than unity. Thus each electron w i l l  release more 

electrons at its point af impact, and these electrans w i l l  rnrrtixue s b n g  

t,izrgtrrp zn a similar fashion. The trrtal gain i n  electron current almg 

the  s t r i p  w i l l  be a f i n c t i m  of the  magnetic and electrastat ic  f ie ld  

strengths and the length of the  dynaie'. 

An apprDximate analysis can be made 3f the path af an electron i n  the  

resistance s t r i p  multiplier by assuming the electron trajectory t a  be t r x h o i d a l  

and the initial electron energy t o  be negligible. The radius of curvature 

of' the  electron path is given by: 

R = -  

where R = path radius, cm 
m = mass af charged particle,  cpn 
e = electronic charge, abcmlmbs 
B = magnetic f i e ld  intensity, gauss 
V = accelerating patential, abvolts 

Hawever, the accelerating p&ential  is determined by the length af the 

jump of the  electron and the electr ic  field strength E along the d y n d e ,  or: 

v = 2 R E  

Substituting equatim (2) 

4mE 
R = e B 2  

The effective muaber of stages 

the diameter af the  individual 

(2) 

into equatim (1) gives: 

(3 1 
is given by dividing the dynde length by 

jumps. This number can be altered by adjusting 

either the magnetic f ie ld  in tens i ty  or the patential  gradient along the dyncde. 

For a given magnetic f i e ld  intensity there exists a singular electrostatic 

f i e ld  intensi ty  a t  which maximum gain occurs, althmgh th i s  maximum is b r a d .  

The warking parameters are chosen as the best camprase  i n  performance 

between many 1%-gain stages and anly a few high-gain stages. 
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The electrmagnet multiplier has been used t o  study combinations of 

e lectrostat ic  and magnetic f ie ld  strengths. These studies indicated an 

aptimum magnetic f ie ld  strength of appraximately 180 Gauss i n  canbinatian 

with electrastat ic  f ields created by the application of loo0 - 1400 Volts 

across the  dyncde, for  mr particular multiplier configuratian. 

The parameters of the  permanent magnet multiplier were chosen frm the  

resul ts  of the  electr-netic multiplier tests. The permanent magnets 

greatly reduce the  mer-a l l  s i z e  of the multiplier, require no pmer f a r  

aperaticm as dces the electrmagnet, and do n=rt generate heat. 

As previously mentioned, the  dyncde surfaces of the  resistance s t r i p  

multipliers w e r e  th in  films of t i n  mide. These f i l m s ,  and films af t i n  

i n  c m i n a t i o n  with sther metals, have s h m  s tab i l i ty ,  ruggedness, high 

secondary emissian rat ios ,  and g o d  r e s i s t i v i ty  t o  poisaning by atmospheric 

C Q ? & & n a n t s .  The dyncde strips have titanium dioxide coated glass micro- 

scope slides as t he i r  substrates. The incorporation af the  titanium dioxide 

f i l m  between t h e  glass substrate and the  secondary emissive surface has 

improved dynAe performance mer the case where the  f i n a l  film was applied 

d i rec t ly  t 3  the  glass, i n  the  fo l lming  ways: bonding of the film t o  the  

substrate is  improved; t he  resistance of the dynde remains canstant 

during prolonged exposure t o  theatnosphere; a more unifarm re s i s t i v i ty  

is obtained; and arcing mer at the electr ical  contacts caused by fi lm 

breakdwn has been eliminated. 

Tin oxide surfaces were selected because of t he i r  long lifetime under 

electron bmbardment, re la t ively high gain, and the i r  secondary emission yield 

w a s  unaffected by long exposure t o  the atmosphere. The secondary emission 

character is t ics  af the  f i l m s  evaluated are presented i n  Table 11. Several 

of these films exhibited higher yields than t i n  oxide but ncne even closely 
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apprached the lifetime of t i n  a i d e  under continums electron bzanbardment. 

The resistance s t r i p  multipliers are physically small, being only 3 in. i n  

length, 1.5 in. wide and 1.5 in. high. 

the instal la t ion requirements of a mass spectrmeter ion smrce. 

Their small s ize  is  c q t i b l e  with 

Smrces D f  activating electrons have been studied frm two points of 

view; use of beta-emitting r ad iac t ive  materials and the use of phchoelectrons, 

as previmsly discussed. O f  the  sof t  beta-emitting materials investigated, 

p r n n e t h i ~ m ' ~ ~  w a s  chosen for  study because it prduces no ganana rays, has a 

half-life of 2.6 years, a beta-ray energy of 0.0223 MeV, radio-chemical purity 

exceeding 99 percent, and it is relatively inexpensive. Because emits 

only beta rays it is cmparatively easy t3  shield. One curie of Pm147 yields 

3.7 x 1O1O disintegrations per second or a theoretical t o t a l  electron current 

of approximately 6 n a n w e r e s  per second. 

used with any multiplier having a t&al g a i n  of at  least lo4, t o  f'urnish 

sufficient current for  ionizing gas mlecules, ei ther i n  a mass spectrmeter 

or i n  an ion iza t im gauge. 

This is  more than enmgh, when 

"he resistance s t r i p  multipliers w e r e  empl~yed as ion gauges t o  tes t  

the i r  sensit ivity,  response, and s tabi l i ty .  

multipliers as ionization gauges serves t o  shm the i r  feas ib i l i ty  as cold 

electron smrces for  mass spectrmetric use. 

p l i e r  as an ion smrce for a mass spectrzaneter was i n i t i a l l y  suggested i n  

1958 by Testerman4. In  1961, Riemersina, F ~ x  and Lange5 described a cold 

cathale ion gauge u t i l i z ing  an electran multiplier. The resistance s t r i p  

multiplier incorpsrating an electrmagnet has been assembled using ti tanium 

dicrxide f i e l d  s t r ip s  of apprDximately 100 megohms and t i n  x i d e  dynodes of 

at least one megohm (usually 10 meg- or greater). The multiplier shmed 

gains of up t o  lo4 for an applied pstential  of 1100 volts across the  dynde 

and a magnetic f ield of 180 Gauss. 

The operation of electron 

The use of an e l ec t rm m u l t i -  

The calculated effective number of 
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stages or jumps varied between 14 and 20 with a gain per jump of up t o  1.69. 

Figure 5 i l lus t ra tes  the  pressure dependence of' the  ion gauge for  two 

values of grid potential. 

thrmgh a meter t o  g r a n d  and a collector bias maintained at  -25V with 

respect t o  the exit p d e n t i a l  of the multiplier. The g r i d  current w a s  

maintained at a constant 0.1 pa. 

l inear belw abmt 1 x 

w a s  13.3 PA/ 

with 10 p A / p  /mA of grid current for  the  RCA 1949 ionization gauge for  a 

gr id  voltage af +lo0 V. 

For these mc!asurements, the  g r i d  w a s  connected 

The pressure/ion current relationship is 

Torr. The maximum sens i t iv i ty  of t h i s  gauge 

/mA of grid current, f o r  a g r i d  voltage of +lo0 V, czmpared 

Gain-decay and mtput electron energy distribution studies have been 

canducted using the  electrmagnetic multiplier, i n  which both the magnetic 

field and the  dyncde voltages were variable. 

gain-decay study, using a dynae  that had been exposed t o  the  atmosphere 

fo r  a considerable p e r i d  of time, pr3ved that  t he  multiplier w a s  capable 

of reasonably long p e r i d s  of operation. 

current decreased frm 8.1 Cia for  an input af 3 nA (gain of 2600) t a  1.2 PA 

(gain of 400) after 47 haws of operatian. "his decay w a s  a lso accmpanied 

by a carbonaceas buildup, with the  dynde resistance decreasing frm 3.5 

meg* t o  0.9 m e g h .  

1.2 x lo-' Tarr during this study. 

The multiplier, i n  the  

The multiplier electron mtput  

The operating pressure varied frm 5 x t o  

Electron energy distribution studies cmducted during t h i s  gain-decay 

per iM indicated tha t  the energy d is t r ibu t im of the  exiting electrons did 

not change with gain variations. Figure 6 shws  a typical  atpt electron 

energy dis t r ibut ion frm the multiplier. 

the  electrons emerging frm the multiplier is approximately equal t a  the 

energy gained by the electrons during individual jumps i n  the  multiplier. 

The peak distribution energy of 
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The bradness of the  curve indicakes tha t  the  points a t  which the  electron 

finally departed frm the  dyndes were n3t all a t  the  same potential, but 

rather distributed along t he  last few millimeters of the act ive surface of 

the dynade. Reflected primary electrons caused the  high energytai l ing of 

t h i s  curve. 

Regulation of t he  emissim current frm these cald e l ec t rm smrces w i l l  

be cmparatively simple because the  ionizing current gradually decreases with 

time and is n d  subject t o  the violent fluctuations fmnd i n  thermionic emitters. 

Three methds are being considered f a r  t h e  regulation of the  ionizing current 

frm the  cold s m c e s .  These are: 

variation af the  current flcwing t a  the  hydragen lamp thrmgh a closed-hop 

feedback system and, 

variation af an adjustable iris between the  smrce  and the  mltiplier t o  vary 

the  number of incident excitation electrons. A pAent ia l  methd of ionization 

current regulation by adjusting t h e  dynde voltage thrmgh feedback techniques 

is a l so  being cansidered. 

vary, t he  re la t ive  energy dis t r ibut ion of the electrons leaving the multiplier 

has been shmn t o  remain canstant, assuring a constant and reprcxlucible 

cracking pattern. 

(1) f o r  phatocathde excitation s m c e s ,  

(2) fo r  the  phcrtacathde and radimctive beta s m c e s ,  

Althmgh the  over-all gain of the  multiplier may 

msummary 
An electran multiplier, activated by photoelectrons or beta par t ic les  

frm a radicmctive material, can be used as a smrce  

i n  ion gauge and mass spectrmetric applications. 

characterized by ~ C J W  temperature aperation, high ianization efficiency, and 

an electron energy dis t r ibut ian t h a t  d x s  n=rt change with multiplier gain 

variations. 

space applications, include: 

of ionizing electrons 

Such a source is  

Advantages af such a source aver a thermionic emitter, including 

(1) appreciable decrease i n  pmer consumption 
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(2) reduced =rutgassing 

( 5 )  high frequency mcdulatian capability D f  t h e  electran beams, and (6) can- 

paratively l i t t l e  emission fluctuation. 

(3) na getter effect  (4) mare rugged cmstructian 

1 T e s t  resu l t s  shcw the s m c e  i n  mass 

spectrmetric applicatims t a  be highly efficient, t o  cause na deteriaratian 

i n  resalution, and t a  eliminate many af the  ambiguities direct ly  attributable 

t o  the  presence af a thermianic emitter i n  the m86s spectraneter. 

I 
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TABLE I 

Decrease i n  Einission Current of Tantalum Photocathode 

on Bposure t o  Poisoning Agents 

Poisoning Agent Time Decrease i n  Current 

Butane 23 hr. 754e 

Diffusion Pump O i l  10 hr. 4@ 

TABLE I1 

Decrease i n  Secondary Rnission Coefficient of Ag-Mg Dyncdes 

frsn Extended aposure of Gases 

%boning Agent Time of Expasure Decrease i n  Secondary Bnission 

Diff'usion Pump Oil 8 hr. 6.M 

Butane 8 hr. 4.6s 

Air 8 hr. 1.9i 

Argm 8 hr. 1.4$ 

H e l i u m  60 hr. l*@ 



TABLE I11 

Film 

SnO 
2 

SnO 
2 

Secmdary anissim Characteristics of Thin Metal Film 

Act ivat  i m  
Prxess 

W i r m u n  
Secmdary 
Ehission 
Coeff ic ient  

Heated i n  air f o r  3.5 3.5 
hmrs at 19OoC 

Heated i n  air f m  10 
minutes at  600°C 

8.0 

98$ s n - e  ~b Heated i n  air f a r  5 8.0 
minutes at 500Oc 

80$ Sn-2@ ~l Heated t o  19OoC i n  3.45 
axygen at 20 mm Hg 

50% --5@ 43 Heated to 190°C i n  3 045 
cxygen at  20 nrm Hg 

5@ Mg-5M Al Heated t o  28ooc and 2.56 
expmed to atmosphere 

M g - A g  H e a t e d  t o  270°C and 4.62 
(Cmmercial) exposed t:, atmosphere 

5074 *-5@ Ag H e a t e d  t o  220°C and 11.00 
exposed t o  atmosphere 

Primary Elec- 
trm Energy fo r  
maximum yield 
(e lec t rm volts)  

180 

180 

180 

180 

180 

100 

150 

220 
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Figure 4 
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Collector Current, nano amps 
Figure 5 

Pressure Dependence of Multiplier Ion Gouge 
$1. K. Tester.xln, et. ~ 1 .  
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